Preferences as binary relations

Brice Mayag

University Paris Dauphine LAMSADE FRANCE

Chapter 1

Definition

- ullet A subset of ordered pairs of a set X is called a binary relation.
- Formally, R is a binary relation on X if $R \subseteq X \times X$.
- Usually we write x R y if $(x, y) \in R$

Relation as Directed Graphs

Let be R a relation on a set A. A direct graph representation of relation R is G = (A, E) where A is the set of nodes and E the set of direct edges where

$$(a,b) \in R \iff (a,b) \in E(\text{an arrow from } a \text{ to } b)$$

Relation as Matrices

Let be R a relation on a set A. The matrix representation of relation R is $M_R = [m_{ab}]_{(a,b) \in R}$ where

$$\begin{cases} m_{ab} = 1 & \text{if } (a, b) \in R \\ m_{ab} = 0 & \text{if } (a, b) \notin R \end{cases}$$

Properties

A binary relation R is

- Reflexive if for every $x \in X$, $x \in X$;
- Irreflexive if for every $x \in X$, not(x R x)
- Complete if for every $x, y \in X$, x R y or y R x (possibly both);
- Weakly complete if for every $x, y \in X$, $x \neq y \Longrightarrow [x \ R \ y \ \text{or} \ y \ R \ x]$ (possibly both);
- Symmetric if for every $x, y \in X$, $[x \ R \ y \Longrightarrow y \ R \ x]$;
- Asymmetric if for every $x, y \in X$, $[x \ R \ y \Longrightarrow not(y \ R \ x)]$;
- Antisymmetric if for every $x, y \in X$, $[x \ R \ y \ \text{and} \ y \ R \ x \Longrightarrow x = y]$;
- Transitive if for every $x, y, z \in X$, $[x \ R \ y \ \text{and} \ y \ R \ z \Longrightarrow x \ R \ z]$;
- Negatively transitive if for every $x, y, z \in X$, $[not(x R y) \text{ and } not(y R z) \Longrightarrow not(x R z)]$;
- Semi-transitive if for every $x, y, z, t \in X$, $[(x R y) \text{ and } (y R z)] \Longrightarrow [(x R t) \text{ or } (t R z)]$
- Ferrers if for every $x, y, z, t \in X$, $[(x R y) \text{ and } (z R t)] \Longrightarrow [(x R t) \text{ or } (z R y)]$.

Relations P and I from R

For a binary relation R on X, we define a symmetric part I and an asymmetric part P as follows: for all $x, y \in X$

- \bullet x I y if [x R y and y R x]
- x P y if [x R y and not(y R x)]

Concatenation of two binary relations

Let be \mathcal{R} and \mathcal{R}' two binary relations on X. For all $x, y \in X$

$$x \mathcal{R} \bullet \mathcal{R}' y \iff \text{there exists } z \in X \text{ s.t. } [x \mathcal{R} z \text{ and } z \mathcal{R}' y]$$

Proposition

Let be R a binary relation on X.

- **3** \mathcal{R} complete $\iff \mathcal{R}$ reflexive and weakly complete
- $lacktriangleq \mathcal{R} \ asymmetric \ and \ negative \ transitive \implies \mathcal{R} \ transitive$
- lacktriangledown \mathcal{R} complete and transitive $\Longrightarrow \mathcal{R}$ negative transitive

Definition

- A binary relation R on X that is reflexive, symmetric and transitive is called an equivalence relation.
- A binary relation R on X is a preorder if R is reflexive and transitive.
- A binary relation R on X is a weak order or a complete preorder if R is complete and transitive.
- A binary relation *R* on *X* is a total order or a linear order if *R* is complete, antisymmetric and transitive.

Exercise 1

Let be \mathcal{B} a binary relation on a set $X = \{a, b, c, d, e, f\}$ defined by:

- lacktriangle Give a matrix and a graphical representation of $\mathcal B$
- Is B reflexive? symmetric? asymmetric? transitive? negative transitive? semi-transitive?

Exercise 2

Let us consider a binary relation \mathcal{B} on $A = \{a; b; c; d; e; f\}$ defined as follows:

```
a B a; a B b; a B c; a B d; a B e; a B f;
b B a; b B b; b B c; b B d; b B e; b B f;
c B b; c B c; c B d; c B e; c B f;
d B c; d B d; d B e; d B f;
e B c; e B d; e B e; e B f
f B e: f B f
```

- $m{\mathcal{R}}$ is said to be a *semi-order* if it is complete, semi-transitive and de Ferrers.
- The binary relation \mathcal{R}^+ on A defined by for all $a, b \in A$:

$$a \ \mathcal{R}^+ \ b \Longleftrightarrow \ \text{for all} \ c \in A, \left\{ \begin{array}{c} b \ \mathcal{R} \ c \Rightarrow a \ \mathcal{R} \ c \\ \text{and} \\ c \ \mathcal{R} \ a \Rightarrow c \ \mathcal{R} \ b \end{array} \right.$$

is called the trace of R.

- Give the trace of the relation B above.
- \bigcirc Is \mathcal{B} a semi-order?

How to extend a partial pre-order to a complete preorder?

By applying a topological sorting when there is no strict cycle in the preferences.

Idea of the numerical representation

We try to construct a binary relation \succeq on X such that there exists a numerical function $f: X \longrightarrow \mathbb{R}$ satisfying the property:

$$x \succsim y \iff f(x) \ge f(y)$$

In general, \succeq is assumed to be a preorder.

- x ≿ y means x is at least as good as y
- ullet \succ is the asymmetric part of \succsim
- ullet \sim is the symmetric part of \succsim

Proposition

Let be \succeq a preorder (complete) on X representable by a function $f: X \longrightarrow \mathbb{R}$ i.e. $\forall x, y \in X, x \succsim y \iff f(x) \ge f(y)$

The following two properties are equivalent:

- (i) $v: X \longrightarrow \mathbb{R}$ is a function representing \succeq
- (ii) There exists a strictly increasing function $\varphi: f(X) \longrightarrow \mathbb{R}$ such that $v = \varphi \circ f$

Remark

f is an ordinal scale (See Chapter 2).

Separability

A binary relation \succeq on X is said to be separable if there exists a countable set $Z \subseteq X$ such that, for every $x, y \in X \subseteq Z$,

if
$$x \succ y$$
 then there exists $z \in Z$ such that $x \succsim z \succsim y$

Theorem (For every X)

The following are equivalent

- (i) \succsim is complete, transitive, and separable
- (ii) There is a function $u: X \longrightarrow \mathbb{R}$ that representing \succsim

Reference

- D. Bouyssou and Ph. Vincke, Binary Relations and Preference Modeling, in "Concept and Methods for decision aiding", Ch. 2, 2009
- S. MORETTI, M. OZTÜRK and A. TSOUKIAS. Preference Modelling. In J. Figueira, S. Greco, and M. Ehrgott, editors, Multiple Criteria Decision Analysis: State of the Art Surveys, (2nd edition 2016). Available at http://www.lamsade.dauphine.fr/~ozturk/publicationsbis.html